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ABSTRACT

This report describes a camputer pragram designed ta set up the secular determinant
arising fram an energy bond colculotion in the LCAO (Lineor Combinotion of
Atomic Orbitals) appraximation. The program determines which transfer integrals
vanish, and which are reloted; further, it camputes the apprapriate structure factor
(which cantains the mamentum dependence) far each entry in the secular determi-
nant. This pragram can handle arbitrary crystcl symmetry, unit cells with many in-
equivalent atams, interactians involving up ta faurth-nearest neighbors, ond a
choice of s-, p-, and/or d-arbitals an the vorious inequivolent atoms. The tronsfer
integralsare left as parameters ta be determined fram the eigenvalues carrespanding

to special symmetry points in the Brillouin zane.

Accepted far the Air Force
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Chief, Lincaln Labaratory Office
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LCAO SECULAR DETERMINANT PROGRAM

This report describcs a computer program designed to set up the secular determinant
arising from an energy band calculation in the LCAQO (Liinear Combination of Atomic Orbitals)
approximation. The program can handle arbitrary crystal symmetry, unit cells with many
inequivalent atoms, interactions involving up to fourth-necarest neighbors, and a choice of s-,
p-, and/or d-orbitals on the various inequivalent atoms. The transfer integrals are left as
parameters to be determined from the cigenvalues corresponding to special symmetry points
in the Brillouin zono.* These eigenvalues may be obtained, for example, by an augmented plane
wave (APW) calculation.

The input data must specify the allowed symmetry operations of the erystal, the three non-
coplanar lattice translations, the positions of the inequivalent atoms, the orbitals to be asso-
ciated with these atoms, and the relevant interactions. The input is discussed in Sec. II; the
output is discussed in See. V.

In principle, the secular determinant could be written down immediately if all the transfer
integrals were distinct. However, certain transfer integrals vanish, others are identical (to
within a sign), and still others may be specified as linear combinations of remaining ones. The
various symmetry operations of the crystal generally carry a given transfer integral into a
linear combination of other transfer integrals. This situation arises when an orbital transforms
into a linear combination of orbitals. These operations yield relationships or equations involving
the transfer integrals, and may be used to reduce the number of paramcters to a minimal set.

A particularly simplc example occurs when a transfer integral is transformed into the negative
of itself. It then vanishes.

At this point, it will be convenient to list certain variable names which recur throughout

the program.

NA Specifies the number of inequivalent atoms in unit cell.

NS Specifies the number of symmorphic symmetry operations
(. SS0.).

NNS Specifies the number of nonsymmorphic symmetry operations
(. NSSO.).

* This techni-que was first suggested by J. C. Slater and G.F. Kaster, Phys. Rev. 94, 1498 (1954).




TRS(I, J) A 3 X 3 matrix with each row specifying a non-eoplanar latticc
translation™ (the numbcr in the first column specifics the
x-coordinate, etc.). I indicates the row, and J indicates the

eolumn.

SYM(I, J, K) A matrix spccifying a given symmetry operation. 1 indieates
the symmetry operation under study. For a fixed value of 1
(that is, for a given symmetry operation), J and K indieate
the row and column of a 4 X 4 submatrix that cxpresses ex-
plicitly the given symmetry operation. This matter is ex-

plained in morec detail in See. Il

NA{I, J) Spceifics the extent of interaetions eonsidercd between 1 and J,
where I and J indicate two incquivalent atoms; e.g.,
If N equals 0, then self-intcractions only are con-
sidered (if relevant)

If N equals 1, then interactions between atom | and
all thc nearest atoms of type J are to be considcred

If N equals 2, then atom I to ncxt-nearcst atoms of
type J are to be eonsidered

Bt

NSYM(I) Explained along with subroutine NONSYM — if no atoms arc re-
lated by an . NSSO., then all NSYM(I) = 0.

NORB(I) Specifics type of orbitals to be studicd; e.g.,
If NORB(I) = 1, then only s-type orbitals on atom I
are considered

If NORB(I) = 2, then s- and p-typec orbitals on atom 1
are eonsidered

If NORB(I) = 3, then s-, p-, and d-type orbitals on
atom I are considered.

NCHEM(I) Speceifies ehemical nature of atom I; e.g.,

NCHEM = 1, atom of chemical type 1
NCHEM = 2, atom of chemical type 2
NCHEM = 3, atom of chcmieal type 3.

NA1 Specifics number of inequivalent atoms of ehemical type 1.
NA2 Specifies number of inequivalent atoms of chcmical type 2.
NA3 Specifies number of inequivalent atoms of chemieal type 3.

(NA1 + NA2 + NA3 = NA)

* Any distances supplied to the pragram shauld be in some apprapriate reduced units, e.g., in multiples of a,
where a is any edge length of the unit cell.



NSM(I, J) A matrix specifying the allowed . SSO., where I indicates
atom number I, and J indicates . SSO. number J.
NSM(I, J) - 1 implies that J*' .$SO., with origin
at atom 1, is allowed™
NSM(I, J) = 0 implies that J*P . SSO., with origin
at atom 1, is not allowed.
CLST Specifies closest distance between any two atoms in lattice.
It is used to compensate for rounding off errors in machine.
One only needs to specify a rough estimate of CLLST. In-

ternally, CLST is reduced by a factor of 100.

NI, Specifies atom number NL. Since the program deals with pairs
of atoms when considering transfer integrals, generally one
atom is chosen (in turn) and then its intcractions with the other
atoms are considered. Conventionally, the former atom is
associated with the label NL and is referred to as the "fixed"
atom in this report, while the latter atom is associated with
the label NM and is referred to as the "variable" atom. Con-
sult Sec. II, part (b) for more details on this point. If there
are no . NSSO., then the numbering system chosen may be
arbitrary; however, if there is an . NSSO., the numbering sys-

tem is fixed by this choice. This point is amplified in Sec. IX.
TlEs Specifies type of orbital on NI, [see NORB(I}]

ILL = 1, s-type orbital
LL = 2, p-type orbital
I.LL = 3, d-type orbital.

LI.M Specifics which orbital, given the type, is being considered
on NL.
IFor LI. = 1 and LLM =1 , s-orbital is under study
Fori LI = 2 and LM =4 px-orbital is under study
LLM = 2 , p_-orbital is under study
BNV = B, pz-orbital is under study
For LL = 3 and LLM =1 , dx -orbital is under study
LLM =2 , dxz-orbital is under study
LM 230, dyz—orbital is under study
LILM =4 , d 2 2-0rbita1 is under study
> vt
LEEM =15, d 2—orbita1 is under study.
z
NM Specifies atom numbcr NM.
ML Specifies type of orbital on NM.

* Although o lottice possesses a certoin group symmetry, oll the point operotions of thot group will corry the lot-
tice into itself only ot certoin positions. At other points, the symmetry will be more restricted. At o generol
point, there will be no symmetry.



MLM Spccifies which orbital, given thc typc, is being considered
on NM.

NX Specifies which lcvel of atoms of incquivalent type NM. There
are whole classes of atoms associated with the number NM:
those which arc closest to our "fixed" atom NL (corresponding
to an NX value of 1), and those which are the next closest to

atom NL (corresponding to an NX value of 2), etc.

NLEV Specifies which atom of type NM within a given level (or fixed
value of NX) is bcing studied.

There are limitations on certain of thc above variables:

1
4
NCHEM £ 3
NLEV £ 10
These limitations may bc modified by changing the appropriate initialization statcments
involved,*T so that the program conforms to the particular problem under consideration and to
the storage capacity of the system used.

In the following sections, wc shall consider each of the subroutines in morc dctail.

I. LCAO

The calling sequence of the program is indicatcd in Fig. 1, where the subroutine names are
displayed. LCAO reads in the input data using READ, and calculates the effect of the various
point symmetry operations (rotations and reflections) on the s-, p-, and d-orbitals in ORBIT.

I.CAO then calls POISON, which computes the positions of all atoms considercd in the particular

program.
[3-83-6042]
LCAO
READ ORBIT TFSX NONSYM POISON .
T Fig. 1. Calling sequence of subrautines.
] ]
ZERO PARA HOPLES
ZERO ZERO

* These initiolizations ore far ITF in LCAO, and far KKW and MISW in ZERO.
1+ NNS and NCHEM would require more elabarate modificatians.



Following this, LCAO sets up the correspondence between the transfer integrals and their
Hermitian conjugate (11. C.). A transfer integral is specified by the set of values: NI, L1, LLM,
NM, ML, MLM, NX, and NLEV. The H.C. transfer integral would be specified by a set of
values: NM, ML, MLM, NIL, LL, LLM, NXHC, and NLVHCJ — where NXHC and NILVHCJ are
to be determined (see Fig. 2). As indicated in Fig. 2, the position of the atom of type NL. (asso-
ciated with the labels NXHC, NLEVHC) relative to the atom of type NM is known; it is the nega-
tive of the position of the atom of type NM (associated with the labels NX, NLEV) relative to the
atom of type NL. Using this information, LCAO locates the atom of type NL in the corresponding
position. This then determines the values of NX11C and NLVHCJ.

This information is to be used by the program to

reduce the number of independent parameters, using NL,LL, LLM, NXHC, NLVHCJ
: - ~ X
the equality between a transfer integral and its H. C.
HERMITIAN CONJUGATE
Here, one should recall, the program keeps one - TRANSRER ITECRAL
atom "fixed" when relating and parameterizing trans- : o :
NM, ML, MLM
fer integrals. In so doing, it generates relations be- | ‘
: |
tween transfer integrals only in a particular row in | |
7 |
the secular determinant. However, a transfer in- ! X !
| bl G
tegral may be related to some other transfer inte- L >§ I
gral in the same column but different rows (i.e., GIVEN TRANSFER o

IRTESRAL NM, ML, MLM, NX, NLEV
NM considered "fixed"). e e

Now, the given transfer integral is equal to its Fig. 2. Relatian between given transfer

H.C. Further, the H.C. lies in the NM row, which integral and its Hermitian canjugate.
contains the same relationships among its transfer Dashed line carrespands ta unit cell
boundary.

integrals that the NM column contains among its
corresponding transfer integrals. Hence, we can use the above equality to search for relation-
ships in columns as well as in rows.

Following the above calculations, LCAO then begins setting up the secular determinant.
LCAO chooses a particular entry in the secular determinant in the following expeditious order:
I.L,, ML, chemical type of "fixed" atom, chemical type of "variable" atoms, NI., NM, [.LM,
and MLM. A given transfer integral, within a given entry, is specified by NX and NLEV. This
specification is done either in TFSX or in NONSY M.

Finally, LCAO calls either TFSX or NONSYM. Ordinarily, TEFSX will be called; however,
if the given entry is related to some previously considered entry by an . NSSO., then NONSYM is
called. The variable NSM determines which subroutine is called. Its use is further explained
in the description of NONSYM (Sec. IX).

II. READ
Following is the order in which the data cards are read in using subroutine READ.

(a) One card with the values of NA, NS, and NNS (integer format*). These
values are to be right adjusted in columns 1 to 10, 11 to 20, and 21 to 30;
i.e., if NA = 1, then put a "1" in column 10; if NA = 10, then put a "1"
in column 9 and a "0" (or blank) in column 10.

* Integer format — use na decimal points, right adjusted; decimal farmat — use decimal point, put number any-
where in columns reserved.



(b) NA cards listing the positions of the NA inequivalent atoms (in the
assigned order). Eaeh card contains the x-, y-, and z-ecoordinates*®
of the atom in eolumns 1 to 10, 11 to 20, and 21 to 30. This is in
deeimal format.¥ Note that card number 1 should have three 0's
sinee, by convention, the first atom fixes the origin for our eo-
ordinate system.

(e} ‘iI'hree eards speeifying each of the three non-coplanar lattice transla-
tions. Each eard eontains the x-, y-, and z-components in the same
decimal format as above.

(d) Four X NS eards specifying the NS .SSO.'s. Each set of four cards
speeifies one . SSO. — these are in the form of 4 X 4 matrices (see
Fig. 3 in See. IIl for more details). The first row of the . SSO.
matrix is on the first eard in the set, the seeond is on the seeond
eard, ete. Again, the same decimal format, now (with four numbers)
using eolumns 1 to 10, 11 to 20, 21 to 30, and 31 to 40.

(e} Four X NNS cards speeifying the . NSSO. in the same way as in
(d) above. 1f NNS = 0, then, of eourse, no eards are to be supplied.

(f) NA cards speeifying the array N. There are NA entries on each
eard. If we think of N as an NA X NA matrix, then the first eard
contains the first row, etc. The eards are in integer format, but
3 eolumns for each entry instead of 10 (using eolumns 1 to 3, 4 to 6,
7 to 9, ete.).

(g) One eard with NA entries specifying NSYM (see Sec. IX for more
details). If there is no . NSSO., this eard may be blank. The format
is the same as (f).

(h) One eard with NA entries specifying NORB; same format as (f).
(i) One eard with NA entries specifying NCHEM; same format as (f).

(j) One eard with three entries specifying NA1, NAZ2, and NA3;, same
format as (a).

(k) NA cards each with NS entries specifying the array NSM. Again,
considering NSM as an NA X NS matrix, the first eard corresponds
to the first row, etc. The cards are in integer format, but 1 column
for eaeh entry.

(1) One card specifying CLST. The format is decimal; the eolumns
reserved are 1 to 10.

III. ORBIT

A's mentioned previously, ORBIT computes the effect of a given symmetry transformation
on a given orbital.

The transformations are read in as 4xX 4 matriees of the form shown

in Fig.3. (R is a 3 X 3 matrix representing the associated point trans- 9
5

formation, where Z Rijxj = x;. The subseripts i and j label the Car- (R) b

i=1 c

tesian eoordinates; a, b, and e are the three (Cartesian) components
of the associated nonlattiee translation. All transformations are active,

i.e., one rotates the atoms, not the eoordinate system.) If the trans- Fig. 3. Form of motrices

formation is an . SSO., thena =b = e = 0. The 3 X 3 matrix in the upper representing given sym-

left-hand eorner is then a eonventional matrix representing the trans-  Metry operotion.

formation in Cartesian coordinates, e.g., refleetion in x-y plane would have two entries of unity

* Any distances supplied to the program should be in some oppropriate reduced units, e.g., in multiples of o, where
o is ony edge length of the unit cell.

T Integer format — use no decimol points, right odjusted; decimal formot — use decimal point, put number ony-
where in columns reserved.



along the diagonal, followed by an entry of minus unity, with all other entries 0 ( in the 3 x 3
matrix). Before the representation of an . NSSO. is described, the term .NSSO. should be de-
fined, since it differs from the usual convention.

The term is best explained by an example. The diamond structure has 48 symmetry opera-
tions: 24 .SSO., and 24 .NSSO., where .NSSO. means nonsymmorphic symmetry operation in
the conventional sense. Any one of the operations corresponds to a rotation and/or reflection
followed by nonlattice translation. 1f we chose any one . NSSO. in the conventional sense and
combined this operation with each of the 24 . SSO., then all 24 . NSSO. would be generated in
the conventional sense. In this report,an . NSSO. corresponds to any one of the conventional
. NSSO. Further, the a, b, ¢, inthe 4 X 4 matrix representation of this . NSSO., correspond
to the x-, y-, and z-components of the associated nonlattice translation, respectively, while
R (the 3 X 3 matrix) is the associated point transformation.

Now, in general, a given orbital transforms into a linear combination of orbitals of the
same type, either under an .SSO. or an . NSSO. (of course, the orbital is unaffected by the
values of a, b, and ¢ for an .NSSO.). Hence, a given transformation A generates a set of
1 x 1, 3xX 3, and 5 X 5 dimensional matrices indicating how the s-, p-, and d-orbitals trans-
form, respectively. The form of each of these matrices will now be considered.

The orbitals are defined in terms of the usual polar coordinate as:

s=1/2~Nn

B ~N3/2 N1) sin® cos ¢
Py ™ ~N3/2 N7) sin® sine
R= = W3/2 N1) cos o

d ~15/2 N'7) sin© cos ¢ sing
d_ = W15/2 N'1) sin© cos© cos e

d = (N15/2 N7) sin© cos 0 sine

d = W15/4 1) sinze (c‘oszq) - sinzgo)
8 = (EE s W % G B 1]

(N 15/4 \/7) (2 c.os2 0 — sin2 (S] (‘()sz @ - sinZO sin2 @)
A
Under a transformation A, s-orbitals transform into orbitals of type s (s - s). Therefore,

the 1 X 1 matrix contains only the entry unity.

The transformation of the p-orbitals is obvious, e.g.,
A
P, >A“px+A12py+A13pZ ete.

Thercefore, the 3 X 3 matrix is just the matrix A.



. y . . *
For the d-orbitals, the transformation is not as obvious, e.g.,

A
clxyd > c ) AyiAz; 13> = clay A, + A,,8,,) [xpd
ij

+ A, A |yzD

Ficks 12823 * Ay385,

pifiay HApaas) |xz> + c(A

2 2
+ {c/2) 28,85, [x“> + (c/2) -2 P 2>

2
+ e/ 2) 2By By [

where ¢ = N15/2 N7 is the normalization constant for the dxy-orbital which wc have explicitly
separated out. We have proper normalization for the ket's corresponding to dxz and dyz auto-

matically, since dx : dxz’ and d - all have the same normalization constant. However, the

N4

ket's corresponding to thc d , - and dzz-orbitals do not have proper normalization. (Recall
w2

that this normalization constant is ¢/2 = 15/4 N7.) Now, under a given operation, wc will get

some linear combination d |x2> + e |y2> ST |zz>, which can be expressed as

a |x2—y2> +b |3zz— r‘2>
This is obviously not true for an arbitrary matrix, but is true for a representation of crystal

rotations and/or rcflcctions. Now, if we require

2 2 2 2 2 1 2 2 2
dx +ey +fz =a(x —y)+b|l— (22 —x"—y)
N3
then
a——b=d
N3
b
N3
ﬂ:f
N3

Since we have three equations for two unknowns (a and b), we must have an equation relating d,
e, and f so that these equations are consistent. The form of the three equations indicates that
this consistency equationis d + e = —f. Hecnce, a = {d—e)/2 andb = (\/?/2) f.

Returning to the equation indicating the transformation of dxy under A, we see that

d = 2A, A CL= 29A L AN and f = 2A, JA (separating out the normalization constant c/2).

1% i 72 1255228 1:3:=2:3)
Hence, a = A“A21 — AiZAZZ' and b = N/?A13A23. We then have
A

((Dig Aoy FrAyareme ) 7
X

dyy ™ Ayyfpn * A40,) 4y

+ (A + A oA ) d
XZ

11A23 13724

¥ oty ¥ Ayaiog) e

* An orbitol denoted os the ket is unnormalized; that is, it is defined exactly os the carrespanding d-arbitol
without the normolizotion canstont.



ARy, -

+N3 A, A d

In a similar fashion, we get from

where k = N15/4 7,

Finally,

Ayohios) dxz 2

137523~ 2
b
A
S~ Buytipa T Byaleyl des
# M Ay T Ao id,
Wyt ¢ Sl G
Pty Byghue)d 3 2
x -y
+\/_3A13A33 d?Z
A
hon ™ Boidsp * Pogbuil Gy
bl phgn By gliagl do.
* Mo ¥ Sodtue Y
t A gy —Appfgld ,
x“-y
+ «/?A23A33 a5
Z
A
2 2 T
k |x“ =37 I8, s (Ai_jAZ_j_AZiAZ_j) [ij>
i)
A
d g 27 (A8~ Ay8,,) dxy
x -y
P A gl — Rl O
L R T L
1 % 2 2
Y g (g = By “SyatBahd 5 5
z%-y
N3 2 2
# gy~ g) dzz
A
2 2 %
n &g~ =2 =gt 7, A A5~ AjAy — A
i,j

gt} 1D



where n = N15/4 N7 yiclds

A 1
- — (2A_,A
22 N3 3t

d AA—AA)dx

32, LR 222 iy

1
+ ,\T; (B oo — &y 1A13 — Ay48,3) dxz

+ L QA A —A. A .—A A )d

J3 3RABE THR B 227723 “yz
1 2 2 2 2 2 2
+ —— A, — A, —A) —2A, +A L +A)d
e 31 11 24 32 12 22 xz_yz
1 2 2 2
e T S d72

The above equations are then used in ORBIT to calculate the 1 X 1, 3 X 3, and 5 X 5 matrices

generatcd by each symmetry operation.

IV. POISON

POISON computes the positions of all atoms relevant to the problem at hand, and storcs
them in the array PNB. For cxample, if the program required interactions between atom 1 and
up to next-nearest atoms of type 2 (N[1, 2] = 2), then POISON would compute the positions (rela-
tive to atom 1) of all atoms of type 2 ncarest to 1 (assigning them an NX value of unity) and of
all atoms of type 2 the next-nearest distancc out (assigning them an NX value of 2).

Starting with the position in the unit cell of the "variable" atom (in the above case, atom 2),
POISON generatcs a set of lattice sites using thc lattice translations. The sites so generated
outline a parallelepiped with (2 X NMAX) + 3 sites on a side, where NMAX is the largest NX
value to be considered. These positions arc stored in the array PSN. This is a sufficiently
large number such that, among these sites, we may always find the relevant sites to be stored
in PNB.

POISON scarches among the sites for the closest set. 1t stores the number of atoms in
this closest set (in the array NNNX), the radial distance (in the array DNX), and their positions
(in the array PNB). These sites are given an NX value of unity. Thcn, it sets the associated
dummy positions PSN to 10, thus climinating this set of lattice sites from consideration when
POI1SON searches for the set of next-closest sites. Hence, the same search routine can be used
again; that is, POISON again looks for the set of closest lattice sites. This set is then given an
NX value of 2. This process continues until POISON has computed the positions for NMAX levels

of atoms.

V. TFSX

LCAO picked a pair of atoms (NL, NM) and a corresponding pair of orbitals (LL, LLM, ML,
MLM) which spccify an entry in the secular determinant. Within a given entry, we must consider,
in general, many transfer integrals corresponding to a ring of n.n., n.n.n., etc. Before param-
eterizing thesc transfer integrals, TFSX first computes the variables NO and NOX described

below.

10



Recall that an arbitrary atom in the lattice is completely specified by a set of numbers such
as NL, NM, NX, and NLEV. This atom lies within some ring of atoms, all of whom are the same
distance from atom NL. Now, all these atoms may not have the same NM value; further, they
may not even have the same NX value. For example, suppose there are two types of atoms in
our ring: types 3 and 5. This ring may contain the closest type 3; hence, its NX value is unity.
However, we may have intervening (closer) atoms of type 5, and its NX value may be 2. Simi-
larly, there may be a different number ol types 3 and 5 atoms in the ring. The subscripted
variables NOX and NO give, respectively, for each type of atom in the ring, the level and the
number of atoms. I there are no atoms of a given type, then NO = 0 for this type. These
numbers (NO, NOX) are used later in ZERO (Sec. V1) in calculating to what position in the ring
a given atom is transformed under some symmetry operation (since it is a point transforma-
tion, the distance from NL remains the same).

Before continuing with the flow of the program it would be well to make a digression. There
are two separate outputs (all output statements other than error messages will be found in FFSX
and NONSYM). The first information that appears on output 1 is the relationships between the
various transfer integrals and their H.C. (this was discussed in Sec.1). The same notation is
used in the output as is used in this report. Then, the secular determinant is printed out. A
given entry is specified by the values of LL and ML, the chemical type atom, and the values of
NE, NM, LLM, and ML.M. Within the entry, there may be one or more parameters — cach
parameter corresponding to a transfer integral. A given parameter may appear more than once
(in the same or different entry), indicating an equality between transfer integrals. I a param-
eter number is ever negative, then that parameter is equal to the negative of the parameter as-
sociated with the corresponding positive number, e.g., P(=31) - — P(31). Iurther, associated
with each parameter are the relative x-, y-, and z-coordinates of the NI, and NM atoms (meas-
ured from atom NL to atom NM). One may then compute the structure factor associated with

that parameter or transfer integral. For example, if we have
P(31) (1.00, 2.00, 0.0)

this corresponds to a structure factor e i(kxat2kya) multiplying parameter 3i{. (Recall that all
distances are given in units of some convenient length, a.) A blank entry indicates that all the
transfer integrals in that entry are 0. Which transfer integrals correspond to which parameters,
and which transfer integrals are 0 are indicated on output 2. lixactly how this is done will be
amplified later in this section as we discuss ZIKRO, IPARA, and HOPLES.

It should also be noted that the status of any given transfer integral (whether it has been
parameterized or not, whether it is 0 or not) is indicated by the value of the subscripted variable
ITE, which is initially set a —2 X 104 in LCAO. Hence, if some transfer integral has not been
considered, its I'TEF value is —2 X 104; if found to be 0, its I'T} is 0; if a nonzere parameter,
its 1TE value lies between :L—104. If two transfer integrals are identical, they have the same ITF
value; if they are the same except for a minus sign, the ITI values are the same except for a
minus sign. Ifurther usage of ITK will be explained as the need arises.

Proceeding with our program, TFSX calls ZERO to see if the particular transfer integral
under study is 0. If so, it prints out as explained above; if not, TFSX calls PARA. PARA de-
termines whether this transfer integral is equal to a linear eombination of previously considered

(hence, parameterized) transfer integrals. If so, there are various possibilities. I there is
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only one nonzero paramctcr,* and the coefficient multiplying that parameter is £1, then the ITF
values are equated to each other or to the negative of each other, and that parameter with the
corresponding coordinate of the NM atom is printed on output 1. If the coefficient is not equal
to #1, then (a) the relation between the transfer integrals is printed on output 2, (b) the given
transfer integral is assigned a new parameter number, and (e) that parameter with the cor-
responding coordinate of the NM atom is printed on output 1. If there is more than one non-
zero parameter, then TI'SX proceeds in a fashion similar to the ease when we have a single
coeffieient not equal to +1.

PARA tries to relate the given transfer integral to linear combinations of parameters by
looking at individual equations. (Reeall that each symmetry transformation generates a new
equation.) However, it may be possible to find an expression relating the given transfer in-
tegral to a lincar combination of parameters by solving the entire sect of equations generated by
the transformations. This possibility is investigated in HOPLES (Sec. VIII). Hence, if PARA
is not able to relate the given transfer integral to a linear eombination of parameters, TFSX
calls HOPLES. There is an exeeption, however. The variable XNOP keeps track of the number
of parameters eneountered in the set of equations generated by all the transformations. If XNOP
is 0, then the number of parameters is 0. Henee, these equations are unsolvable and there is
nothing to be gained in ealling HOPLES. The given transfer integral is set equal to a new param-
eter, and this parameter with its eorresponding position is printed on output 1. TFSX indieates
whieh transfer integral this parameter number eorresponds to on output 2.

HOPLES may find a set of linear equations whieh can be solved for the given transfer in-
tegral in terms of some parameters. This set is then printed on output 2, the given transfer
integral is set equal to a new parameter, and this parameter with its eorresponding position is
printed on output 1. If HOPLES does not find sueh a set of linear equations, then TI'SX sets
the transfer integral equal to a new parameter and prints this relation on output 2. Further,

on output 1 the eorresponding entry in the seecular determinant is made.

VI. ZERO

ZERO tests whether a given transfer integral is 0 or not. If the integral is 0, then it re-
turns YESZ = 1; otherwise, it sets YESZ = 0. Essentially, it generates a sct of equations using
the NS symmetry operations. As indieated above, these are all of the form: Given transfer
integral equals linear eombination of transfer integrals. Then it tests these equations to find a
pair where the respective right-hand sides are the negative of each other. If such a pair exists,
the transfer integral is 0.

Before the above proeess takes place, ZERO performs another funetion. Having specified
a transfer integral, we then have speecified a pair of atoms, onec of which is eonsidered to be at
the origin. A given .SSO. will transform the atom not at the origin into some other (or the same)
atom. These .SSO. ean be grouped aceording to the position to which the atom transforms. This
information is used to save a considerable amount of storage space. It is also used for an en-
tirely distinet reason in HOPLES (see See. VIII for further details).

A word about notation: KK or KKW is an array indieating how many . SSO. transform to some

particular atom, and MIS or MISW is an array indieating the corresponding . SS50.

* Transfer integrals which have been previously cansidered, ar parameterized, will be referred ta as "parameters”;
atherwise, they will be referred to as "variables.”
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VII. PARA

PARA looks for an equation of the form: Given transfer integral equals linear combination
of parameters. It uses KK and MIS from ZERO to group the equations; then, PARA generates
the equations in each set. Iach transfer integral on the RHS undergoes a series of tests. First,
PARA checks whether it is a parameter or a variable (by looking at the value of ITI'), If it is a
parameter, ITF is checked again to see if it is 0 or not; if it is 0, it is dropped from the right-
hand side. The same test indicates whether it is the negative of some other parameter; if it is,
the sign of the coefficient is changed and the parameter number is made positive. In either case,
the variable (NOTZER) which counts the number of parameters on the RHS of this equation is
increased by unity, and the coefficient and parameter number are loaded into two arrays (COEY
and ITF2).

On the other hand, if the transfer integral is a variable, it goes through a different process.
Itirst, PARA checks whether it is proportional to the transfer integral on the LIS by generating
a separate set of equations with the original transfer integral on the LS. It scans this set for
an equation of the form: Original transfer integral equals coefficient times this variable. If
sueh an equation exists, it moves the variable to the RHS of our original equation by adjusting
the value of ONII — the coefficient of our original transfer integral. Otherwise, PARA goes on
to generate yet another set of equations. This time the variable is on the LHS. EFach equation
is tested to sce if the RHS is a linear combination of parameters. If a variable is ever en-
countered on the RIS, that equation is immediately dropped. If it succeeds in this, then the
variable is converted into the linear combination of parameters by loading the appropriate num-
bers into COEF and ITFF2. If no such equation exists, then a variable NVAR counting the number
of variables is increased by 1. After each transfer integral on the RIS of the origimal equation
has gone through the above process, NVAR is tested. If NVAR is 0, PARA checks the value of
ONE. If ONE # 0, PARA proceeds; but, if ONE is 0, PARA goes on to a new equation”™ As-
suming ONLE is not 0, PARA then checks the value of NOTZER. If NOTZIER and NVAR are
both 0, then we have nothing on the RIS, Ourtransfer integral is 0, and YIISZ is set = 1. If
NOTZER > 1, then YESLC is set = 1. This indicates to TFSX that PARA has succeeded in
finding an equation relating the given transfer integral to a linear combination of parameters.
PARA then transfers back to TEFSX.

The other possibility is that NVAR is nonzero. PARA then checks NOTZIEER. 1f NOTZER
is 0, i.e., we have all variables on the LLHS, PARA considers a new equation; if it 1s not ZIERO,
then we have a mixture of variables and parameters on the RIS, The variable XNOP (to be ex-
plained below) is then increased by unity, and PARA continues to a new equation.

I'inally, suppose PARA goes through the entire collection of sets of equations without trans-
ferring back to TI'SX. The value of XNOP indicates whether or not all the equations are of the
form: Transfer integral equals lincar combination of variables (_m In this case, there is no
reason to call HOPLES. XNOP communicates this to TEFSX. However, if XNOP > 0, then TIFSX
calls HOPLLES.

VIII. HOPLES

The first half of HOPLLES is essentially a duplicate of PARA, the only distinction being that

instead of discarding a particular equation in a given set, HOPLES retains it. The coeffieient

*1f ONE is 0 and NVAR is 0, at best we have a relation among parameters which is nat useful at the mament,
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on the LHS is storcd in the array ONEK for each equation in the set. Similarly, the arrays
ITFV, COEFV, ITFP, COEFP, and NOTZR contain, respectively, the variable numbers, cocf-
ficients of these variables, parameter numbcrs, coefficients of parameters, and the number of
parameters for each equation. Note that the variables are numbercd internally within a given
set of equations (the first variable encountered in a set is given the numbcr 1, ctc.).

HOPLES procceds to look at this set of equations and selects the linearly independent ones.
HOPLES checks whether a given cquation is linearly dependent with respect to any of the other
equations. If it is not, then it is stored as a linearly independent cquation. This checking
process is accomplished by comparing the given equation with the other equations in the set in
the following manner:

(a) Ensuring there is at least one variable with a nonzero coefficient in

the given equation. (If this is not the case, then we have a relation
among parametcrs only, and the equation is discarded.)

(b) Finding the coefficient of the variable in the equation being compared.

(c) Taking the ratio of this coefficient with the corresponding coefficicnt
in the given equation. (If the variable is missing in the equation
being compared, the ratio is 0.)

(d) Comparing this ratio with the other ratios generated from corresponding
coefficients.

Now, if the ratios are all equal, the two equations arc linearly dependent; otherwise, they
are linearly independent.

One should note that there is a special case whcre the ratios are not actually compared.
Suppose some original ratio has been found; it will be 0 or some finite numbcr. Now, if a
subsequent ratio would involve dividing by 0, it is, of course, never computed and the two equa-
tions are linearly independent.

The array LIE indicates whether a given equation is linearly independent (L.IE = 1) or not
(L1IE = 0). When the above process has been completed, the LIIl's are summed. This gives
the number of linearly independent equations.

This set of equations can fall into one of three categories: (a) number of equations (NUMEQ1)
is less than the number of variables (NUMV + 1) where we include the transfcr integral on the LHS
as a variable; (b) NUMEQ1 = (NUMV + 1); and (c) NUMEQ1 > (NUMV + 1). In turn, this gives us
three cases into which the sets fall: (1) all scts are of type (a); (2) some (possibly nonc) sets are
of type (a), and some of typc (b); and (3) at least onc set is of typc (c). For case (1), HOPLES
rcturns the variable NUMEQ with the value 2 X 104 to indicate this; for case (2), it returns thc
smallest NUMEQ1 as the variable NUMEQ. Furthcr, HOPLES returns the set of equations
(variables, coefficients of variables, paramcters, coefficients of parameters) and NUMVAR,
the number of variables.

If a set of type (c) is ever encountered, HOPLES immediately transfcrs control back to TFSX
along with the same information indicated after case (2). TFSX then prints out these equations

with the messagc that they should be checkcd for consistency.

IX. NONSYM

If a given "fixed" atom I is related to a previously considered "fixed" atom J by an . NSSO.,,
then LCAO calls NONSYM. Thc equation NSYM(I) = J carries this relationship. Its argument I

equals the number of the atom being considered; its valuc J equals the number of the atom to
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which the former is related by the given . NSSO. If there is no such relation, then NSYM(I) = 0.
One must not use the . NSSO. that relates 1 to J until J has had all its transfer integrals param-
eterized. This means that the value of J must be less than the value of 1. Hence, it is neces-

sary to exercise some care in numbering the inequivalent atoms,

@ TITANIUM ATOMS

O OXYGEN ATOMS

Fig. 4. Ti02 rutile structure.

Ti0O
2
If one chooses as the . NSSO. rotation by —90° in the x-y plane, followed (or preceded) by the
translation (- %— %— -ZQ), this then requires the numbering system indicated in IMig. 4, sinece
2 -1, 6 -5, 5 —+-4, and 4 — 3 under the above . NSSO.

The lirst half of NONSYM consists of taking the relative coordinates between the given pair

is a case in point; it has a rutile structure (see Fig. 4) with I)4h as its space group.

of atoms and rotating these coordinates, using the . NSSO. Then, NONSYM searches for an atom
in that position relative to the corresponding previously considered "fixed" atom.

For example, in the above case when LCAO considers any transfer integral with atom 2 at
the origin, it goes to NONSYM. There, the relative coordinates are rotated by —90°. Then,
NONSY M searches for an atom with these coordinates relative to atom 1. Note that the atom
not at the origin need not have the same inequivalent atom number in both cases (although, of
course, it must be of the same ehemical type).

{laving located the corresponding atom not at the origin (which would be specified by a set
of NM, NX, and NLIZV values), NONSYM ecalculated the linear combination of transfer integrals
generated by the . NSSO. It then tests each associated ITY value. If ITF is 0 or if the coefficient
of that transfer integral is 0, then that parameter is not considered. If its I'TI" and coefficient
are nonzero, then their values are stored in the arrays ITFNS and COEFNS, respectively. [From
here, the treatment is the same as in TFSX when the given transfer integral has been found to be

a linear eombination of parameters.
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